¿Qué es la ciencia de datos?
Cuando están alojadas en el cloud, los equipos no necesitan instalarlas, configurarlas, mantenerlas ni actualizarlas localmente. Dado que la ciencia de datos suele utilizar grandes conjuntos de datos, es extremadamente importante contar con herramientas que se puedan escalar con el tamaño de los datos, sobre todo para proyectos con estrechos márgenes de tiempo. Las soluciones de almacenamiento en cloud, como los lagos de datos, proporcionan acceso a infraestructura de almacenamiento y son capaces de ingerir y procesar grandes volúmenes de datos con facilidad. Estos sistemas de almacenamiento aportan flexibilidad a los usuarios finales y les permiten poner en marcha grandes clústeres si es necesario. También pueden añadir nodos de cálculo incremental para acelerar los trabajos de proceso de datos, y permitir a la empresa hacer concesiones a corto plazo a cambio de mayores resultados a largo plazo.
Si bien la ciencia de datos tiene aplicaciones de negocio importantes, su
espectro es más amplio y sus tácticas son más diversas que
business intelligence. Un científico de datos combina programación, matemáticas y conocimiento del
dominio para responder preguntas utilizando datos. SQL es un lenguaje de dominio específico utilizado en la programación y diseñado para gestionar los datos almacenados en un sistema de gestión de bases de datos relacionales (RDBMS) o para procesar flujos en un sistema de gestión de flujos de datos relacionales (RDSMS).
¿Cuál es la diferencia entre ciencia de datos y el análisis empresarial?
AutoAI, una nueva y potente capacidad de desarrollo automatizado en IBM Watson® Studio, que acelera la preparación de datos, el desarrollo de modelos y las etapas de ingeniería de funciones del ciclo de vida de la ciencia de datos. Esto permite que los científicos de datos sean más eficientes y les ayuda a tomar decisiones mejor informadas sobre qué modelos funcionarán mejor para los casos de uso reales. Aunque los términos se pueden usar de manera indistinta, el análisis de datos es un subconjunto de la ciencia de datos.
El aumento del volumen de orígenes de datos y, por lo tanto, de datos, ha convertido a la ciencia de datos en uno de los campos de más rápido crecimiento de todos los sectores. Como resultado, no es de extrañar que el rol de científico de datos haya sido calificado como la “profesión más sexi del siglo XXI” por Harvard Business Review (enlace externo a IBM). Las organizaciones dependen cada vez más de estos roles para interpretar los datos y proporcionar recomendaciones prácticas para mejorar los resultados de negocio. Jeff Wu en una conferencia inaugural para la Cátedra de Estadística HC Carver en la Universidad de Michigan pide abiertamente que las estadísticas pasen a denominarse ciencia de datos y a los profesionales dedicados a esta área, científicos de datos.
¿Cuáles son las diferentes herramientas de la ciencia de datos?
Las herramientas y los procesos de inteligencia empresarial permiten a los usuarios finales identificar insights accionables a partir de datos en bruto, lo que facilita la toma de decisiones basada en datos dentro de organizaciones de diversas industrias. Si bien las herramientas de ciencia de datos se superponen en gran parte de este aspecto, la inteligencia empresarial se enfoca más en datos del pasado, y los insights de las herramientas de BI son de naturaleza más descriptiva. La BI Un curso de analista de datos para integrarse al sector TI está orientada a datos estáticos (que no cambian) que generalmente están estructurados. Si bien la ciencia de datos usa datos descriptivos, generalmente los utiliza para determinar variables predictivas, que luego se usan para categorizar datos o hacer pronósticos. Aunque ambos se superpongan entre sí, la diferencia clave consiste en el uso de la tecnología en cada campo. Los científicos de datos trabajan de manera más estrecha con la tecnología de datos que los analistas empresariales.
Puede revelar cambios de bajo coste en la administración de recursos para obtener el máximo impacto en los márgenes de beneficio. Por ejemplo, una empresa de comercio electrónico utiliza la ciencia de datos para descubrir que se generan demasiadas consultas de clientes fuera del horario comercial. Las investigaciones revelan que es más probable que los clientes https://www.contrareplica.mx/nota-curso-en-linea-desarrollo-frontend-202321129 compren si reciben una respuesta rápida en lugar de una respuesta al día siguiente. Al implementar un servicio de atención al cliente las 24 horas del día, los 7 días de la semana, la empresa aumenta sus ingresos en un 30 %. La ciencia de datos es importante porque combina herramientas, métodos y tecnología para generar significado a partir de los datos.